

COMBINING SYSTEMS ENGINEERING WITH VIRTUALISATION TO ACCELERATE ENGINEERING

Ulrich **SCHULMEISTER**

Vice President Technology and Engineering

Robert Bosch GmbH

Dr. Bassem HASSAN

Transportation & Mobility Industry Director EuroCentral

Dassault Systèmes

CHANNEL 3

TRANSPORTATION & MOBILITY INDUSTRY DRIVERS

New Customer Experience

Transformation which was already happening ...

Dream, explore, validate then seamlessly produce bold new mobility options for demanding global consumers.

Next-generation vehicle success requires advanced creative design, shared intelligence, systems engineering and multidomain collaboration.

Electric, Connected

and Autonomous

Vehicles

Regulation, Quality & Costs Reduction

Accelerate profitable new opportunities, while ensuring quality, fulfilling global/local requirements, and minimizing expenses.

... is **now** accelerated with additional short term and transformation objectives

Reduce time to market and transform online customer journey experience to make it more attractive than competitors.

Co-Investments on hybridization & autonomous between several OEMs and increased importance of software.

Ensure End-products quality, regulation compliance **Invest on short term** pay back programs, reduce warranty cost.

Mass Production to Mass Customization

Improve visibility, efficiency, and control of manufacturing production and operations, within and across global/local plants.

Improve supply Chain resilience and efficiency. **Increase components** reuse.

Sustainable Mobility

New investments go to innovative and sustainable mobility companies and new type of vehicles (2/3 wheelers, last mile delivery ...)

CHALLENGE: MANAGE COMPLEXITY, ENSURE COMPLIANCE

B

Increase of complexity and requirements raise each cost curve further up

A

Design/Bug

Implementation

Bug

ASPICE (Software)

ISO 15504 Information technology – Process assessment

Test Bug

SOP

Cost of Correction

Functional Safety

> Cyber security

ISO/SAE 21434

Exploitation introduction leads to unintended behavior

Safety in Use (SOTIF)

ISO/PAS 21448 Algorithm decision leads to unsafe behavior Over the Air Software Update

UNECE GVA SUM Recommendation on software update

Digital Twins

Virtual Twins

Scale | Technology

Virtual Twin Experiences

R2023X GA TRANSPORTATION & MOBILITY PORTFOLIO

EFFICIENT MULTI-ENERGY PLATFORM

CATIA] 01-POWERTRAIN SYSTEM ARCHITECTURE

- (CATIA) 02-POWERTRAIN ENGINEERING
- SIMULIA] 03-POWERTRAIN STRENGTH, DURABILITY & VIBRATION
- (SIMULIA) 04-POWERTRAIN THERMAL MANAGEMENT
- (a) [SIMULIA] 05-POWERTRAIN LUBRICATION
- (SIMULIA) 06-POWERTRAIN DYNAMICS
- (SIMULIA) 07-ELECTRIC DRIVE ENGINEERING
- (SIMULIA) 08-POWER ELECTRONICS ENGINEERING
- △ ⑥ [SIMULIA] 09-BATTERY CELL ENGINEERING
- (a) [SIMULIA] 10-BATTERY MODULE & PACK ENGINEERING
- (BIOVIA) 11-BATTERY MATERIALS DESIGN
- (SIMULIA) 12-FUEL CELL ENGINEERING
- (a) (CATIA] 13-CHASSIS & SUSPENSION CONCEPT ENGINEERING
- CATIA] 14-CHASSIS & SUSPENSION ENGINEERING
- (중) [SIMULIA] 15- CHASSIS & SUSPENSION STRENGTH, DURABILITY & VIBRATION
- [CATIA] 16-VEHICLE ENERGY MANAGEMENT
 [CATIA] 16-VEHICLE ENERGY
 [CATIA]

SUSTAINABLE MULTI-FUNCTIONAL VEHICLE

- ①① [CATIA] 01-BODY STRUCTURE CONCEPT ENGINEERING
- ① ① [CATIA] 02-BODY STRUCTURE ENGINEERING
- SIMULIA] 03- BODY STRENGTH & DURABILITY
- SIMULIA] 04-BODY STRUCTURE NOISE & VIBRATION
- CATIA] 05- STAMPING DIE ENGINEERING
- CATIA] 06-INTERIOR & EXTERIOR EQUIPMENT
- ENGINEERING
- (CATIA) 07-MOLD & TOOLING ENGINEERING
- (SIMULIA) 08-CABIN COMFORT
- ⑥ [CATIA] 09-VEHICLE PACKAGING & COMPLIANCE
- (SIMULIA) 11-VEHICLE THERMAL MANAGEMENT
- (a) [SIMULIA] 12-VEHICLE NOISE & VIBRATION
- (a) [SIMULIA] 13-RAIL VEHICLE DYNAMICS
 - [SIMULIA] 14-VEHICLE AERODYNAMICS

INNOVATIVE MODULES & TECHNOLOGIES

- [CATIA] 01-BODY STRUCTURE ENGINEERING
- (a) (CATIA] 02-INTERIOR & EXTERIOR EQUIPMENT ENGINEERING
- (SIMULIA) 03- BRAKE SYSTEM ENGINEERING
- (CATIA) 04-CHASSIS AND SUSPENSION ENGINEERING
- SIMULIA] 05- EXHAUST SYSTEM ENGINEERING
- (CATIA) 06-POWERTRAIN ENGINEERING
- SIMULIA] 07-ELECTRIC DRIVE ENGINEERING
- (SIMULIA) 08-BATTERY CELL ENGINEERING
- (SIMULIA) 09-BATTERY MODULE & PACK ENGINEERING
- (BIOVIA) 11-BATTERY MATERIALS DESIGN
- (a) [SIMULIA] 12-FUEL CELL ENGINEERING
- (A) [CATIA] 13-STAMPING DIE ENGINEERING
- △ (A) [CATIA] 14-MOLD & TOOL ENGINEERING
- (CATIA) 15-WIRE HARNESS ELECTRICAL ENGINEERING
- △ (A) [SIMULIA] 16-POWER ELECTRONICS ENGINEERING
- △ (A) [CATIA] 17-MECHANICAL ENGINEERING

ON-TARGET VEHICLE LAUNCH

- Delmia] 01-Part Fabrication Process Engineering Idelmia] 03-Additive manufacturing CATIA] 04-COMPOSITE ENGINEERING & MANUFACTURING PREPARATION (DELMIA) 05-PRODUCTION LINE DEFINITION & VALIDATION (Delmia) 07-Painting line definition & Validation △ ⑥ [DELMIA] 08-BODY LINE DEFINITION & VALIDATION
- (DELMIA) 09-ASSEMBLY ROBOT PROGRAMMING & SIMULATION
- △ ⓓ [DELMIA] 10-MOLD & DIE MACHINING
- △ ⑥ [DELMIA] 11-NC PROGRAMMING & SIMULATION
- (DELMIA) 12- MANUFACTURING VIRTUAL COMMISSIONING
- △ ⑥ [DELMIA] 13-ASSEMBLY PROCESS ENGINEERING & VIRTUAL BUILD
- DELMIA] 14-FINAL ASSEMBLY PROCESS ENGINEERING & VIRTUAL BUILD

3DEXPERIENCE° THINKING

 \frown

SMART, SAFE & CONNECTED

- (6) [CATIA] 01-MOBILITY SYSTEMS ARCHITECTURE
- △⑥ [CATIA] 02-VEHICLE SYSTEMS ARCHITECTURE

DESIGN &

ENGINEERING

- CATIA] 03-REQUIREMENTS ENGINEERING, VERIFICATION & VALIDATION
- SIMULIA] 04-PERFORMANCE DRIVEN ARCHITECTURE
- (CATIA) 05-ELECTRICAL, ELECTRONICS AND SOFTWARE ARCHITECTURE (6) [CATIA] 06-VEHICLE FUNCTIONAL SAFETY
- ▲ ⑥ [ENOVIA] 07-INTEGRATED SOFTWARE ENGINEERING
- (f) [CATIA] 08-EMBEDDED SOFTWARE ENGINEERING
- (ENOVIA) 09-ELECTRONICS DESIGN INTEGRATION
- CATIA] 11-WIRE HARNESS ELECTRICAL ENGINEERING
- (CATIA) 12-FLUID SYSTEMS ENGINEERING
- SIMULIA] 13-VEHICLE ANTENNA & SENSOR DESIGN & PLACEMENT
- (SIMULIA) 14-ELECTRONICS SYSTEM PERFORMANCE MANAGEMENT
- (6) [CATIA] 16-CONTINUOUS EMBEDDED SYSTEMS TESTING & VALIDATION
- (6) [CATIA] 17-ADAS/AD-TESTING & SIMULATION
- (CATIA) 18-SYSTEMS ANALYSIS

 \bigcirc \frown

LEAN PRODUCTION RUN

- (1) [DELMIA] 01-DEMAND PLANNING (S&OP)
- (f) [DELMIA] 02-SUPPLY PLANNING (S&OP) ([DELMIA] 03-MASTER PRODUCTION SCHEDULE
- (d) [DELMIA] 04-MATERIAL SYNCHRONIZATION
- (DELMIA) 05-QUALITY EXECUTION
- (n) [DELMIA] 07-PRODUCTION SCHEDULING
- (6) [DELMIA] 08-PRODUCTION & MAINTENANCE EXECUTION
- (n) [DELMIA] 10-ORDER PROMISING
- (6) [DELMIA] 12-LEAN OPERATIONALMANAGEMENT
- (DELMIA) 13-MANUFACTURING CONTROL TOWER

AFTERSALES & CUSTOMER SERVICE

- CATIA] 01-REQUIREMENTS ENGINEERING, VERIFICATION & VALIDATION
- (DELMIA) 02-DESIGN FOR SERVICE
- (DELMIA) 04-SERVICE TOOLING

 \frown [NETVIBES] 06-DATA DRIVEN BUSINESS PERFORMANCE

ELECTRO MOBILITY ACCELERATOR

- CATIA] 02-BODY STRUCTURE CONCEPT ENGINEERING
- ▲ ⑥ [CATIA] 03-CHASSIS AND SUSPENSION CONCEPT ENGINEERING
- △ ⑥ [CATIA] 04-CREATIVE DESIGN & STYLING
- (CATIA) 05-CLASS-A SURFACES
- △ ⑥ [CATIA] 06-DESIGN EXPERIENCE & VALIDATION
- 🗅 ด [CATIA] 07-WIRE HARNESS ELECTRICAL ENGINEERING
- CATIA] 08-VEHICLE SYSTEMS ARCHITECTURE
- (CATIA) 09-POWERTRAIN SYSTEM ARCHITECTURE
- CATIA] 10-BODY STRUCTURE ENGINEERING
- CATIA] 11-CHASSIS AND SUSPENSION ENGINEERING
- CATIA] 12-INTERIOR & EXTERIOR EQUIPMENT ENGINEERING
- (ENOVIA) 14-3D DIGITAL MOCKUP VALIDATION
- △ ⑥ [ENOVIA] 15- COLLABORATIVE ENGINEERING DEFINITION
- (DELMIA) 16-LEAN AND AGILE DEVELOPMENT
- (NETVIBES] 17-SUPPLIER MANAGEMENT & SOURCING
- (a) [ENOVIA] 19-COLLABORATIVE DOCUMENT MANAGEMENT
- △⑥ [ENOVIA] 20-EXTENDED ENTERPRISE

DRIVE EMOTION

- [NETVIBES] 01-BRIEFING, IDEATION & MARKET WATCH
- CATIA] 02-CREATIVE DESIGN & STYLING
- CATIA] 03-CLASS-A SURFACES
- SIMULIA] 04-VEHICLE AERODYNAMICS
- (SIMULIA) 05-CABIN COMFORT
- CATIA] 06-PERCEIVED QUALITY
- CATIA] 07-DESIGN EXPERIENCE & VALIDATION

BID TO WIN

- (ENOVIA) 01-STRATEGIC PORTFOLIO & PRODUCT PLANNING
- (a) (ENOVIA) 02-COLLABORATIVE PLANNING EXECUTION & ANALYTICS
- (NETVIBES) 03-SUPPLIER MANAGEMENT & SOURCING
- (a) (ENOVIA) 05-COLLABORATIVE DOCUMENT MANAGEMENT
- (ENOVIA) 06-CONTINUOUS PRODUCT DEVELOPMENT
- (CATIA) 07-MECHANICAL ENGINERING
- (1) [CATIA] 09-DESIGN FAILURE AVOIDANCE
- (a) (ENOVIA) 10-COLLABORATIVE ENGINEERING DEFINITION
- 🖲 🚯 [DELMIA] 11-COLLABORATIVE ENGINEERING TO MANUFACTURING
- (Interprise Change & Release Process)
- (ENOVIA) 13-EXTENDED ENTERPRISE

(6) [CATIA] 01-MOBILITY SYSTEMS ARCHITECTURE (6) [CATIA] 02-MOBILITY SYSTEMS VIRTUAL TESTING

SMART MOBILITY OPERATIONS

- (d) [DELMIA] 03-RAIL CREW PLANNING
- (1) [DELMIA] 04-RAIL CREW SCHEDULING
- (d) [DELMIA] 05-RAIL CREW OPERATIONS

VIRTUAL GARAGE

- [NETVIBES] 01-MARKETING INTELLIGENCE
- ▲ ⑥ [3DEXCITE] 05-MASS CONTENT CREATION
- (3DEXCITE) 06-PRODUCT SHOWCASE
- [3DEXCITE] 07-INSTANT PRODUCT COMMUNICATION

GLOBAL MODULAR ARCHITECTURE

- ENOVIA] 01-STRATEGIC PORTFOLIO & PRODUCT PLANNING
 - [ENOVIA] 02-COLLABORATIVE PLANNING EXECUTION & ANALYTICS [CATIA] 04-WEIGHT & BALANCE
 - [ENOVIA] 05-SUSTAINABILITY DRIVEN ENGINEERING
 - [CATIA] 06-REQUIREMENTS ENGINEERING, VERIFICATION & VALIDATION
 - [ENOVIA] 08-VEHICLE ARCHITECTURE SYNTHESIS
 - [NETVIBES] 09-SUPPLIER MANAGEMENT & SOURCING
- ENOVIA] 10-CONTINUOUS PRODUCT DEVELOPMENT
- ENOVIA] 11-COLLABORATIVE ENGINEERING DEFINITION
- [DELMIA] 12-COLLABORATIVE ENGINEERING TO MANUFACTURING
 - [NETVIBES] 13-STANDARD COMPONENT MANAGEMENT
 - [ENOVIA] 15-COLLABORATIVE DOCUMENT MANAGEMENT
- ENOVIA] 16-3D DIGITAL MOCKUP VALIDATION
 - [ENOVIA] 17-ENTERPRISE CHANGE & RELEASE PROCESS
- ∑õ [ENOVIA] 18-EXTENDED ENTERPRISE
- CATIA] 19-KNOW-HOW CAPITALIZATION AND AUTOMATION
 - [CATIA] 20-DESIGN FAILURE AVOIDANCE
 - [ENOVIA] 22-MATERIAL COMPLIANCE
 - [ENOVIA] 23-CERTIFICATION & APPROVAL
 - [NETVIBES] 24-DATA DRIVEN BUSINESS PERFORMANCE
- SIMULIA] 25-CONTINUOUS SIMULATION MANAGEMENT

WHY WE ARE THE RIGHT PARTNER FOR AUTOMOTIVE OEMS DASSAULT SYSTÈMES IS THE LEADING PARTNER FOR AUTOMOTIVE

of all light weight vehicles delivered in 2021 were designed & engineered in CATIA

99%

of the Top 400 WW Automotive Suppliers use CATIA to develop Systems, Sub-Systems or Components

10/10*

of the Top New EV makers relies on CATIA & **3D**EXPERIENCE for their virtual development

*November 2022, https://www.energystartups.org/top/electric-cars/

WHY WE ARE THE RIGHT PARTNER FOR AUTOMOTIVE OEMS DASSAULT SYSTÈMES IS THE LEADING PARTNER FOR AUTOMOTIVE

3DEXPERIENCE PLATFORM

THE KEY ENABLER FOR VIRTUAL TWIN EXPERIENCES

10 out of 13

Major Automotive Groups using CATIA

9 out of 13

Major Automotive Groups decided to use the 3DEXPERIENCE platform

THE AUTOMOTIVE VEE MODEL AS A REFERENCE

AUTOMOTIVE USER JOURNEY

ENGINEERING

Ulrich SCHULMEISTER

Vice President Technology and Engineering

Robert Bosch GmbH

COMBINING SYSTEMS ENGINEERING WITH VIRTUALISATION TO ACCELERATE

Combining Systems Engineering with Virtualization to Accelerate Software Engineering

Ulrich Schulmeister VP Technology and Engineering

Robert Bosch GmbH, Germany

October 16th, 2024

Combining Systems Engineering with Virtualization to Accelerate Software Engineering Software-defined Vehicle

SDV | Vehicle that can **evolve throughout its life cycle**: It changes its key features **by changing its software**.

Technical solution – an SDV is enabled by...

- ASW/MW decoupling
 - E/E architecture
 - OS + MW
 - Virtualization technologies
 - Standard runtime environment
 - Portability to different vehicles or hardware platforms
- Connectivity
 - (Connected) Vehicle
 - (Cloud-based) DevOps Environment

How to develop, integrate and test the missing Feature in an efficient way?

Combining Systems Engineering with Virtualization to Accelerate Software Engineering

Imagine a feature of transferring control to a remote driver momentarily

What are the prerequisites to be fulfilled

- Required conditions are met to transfer control momentarily
 - Vehicle cannot operate or navigate on its own
 - Vehicle is in drivable condition
 - Change of driver is permissible from the surroundings point of view
 - Safety requirements are fulfilled
- Driver is authorized and authenticated to drive the vehicle. Authentication is automated and secure

This feature has to be implemented and validated for functionality, timing latency, safety, security & usability

M/TEY Indrasen Raghupatruni | 2024-09-26

Combining Systems Engineering with Virtualization to Accelerate Software Engineering What is a Feature ?

- For the System Engineer in us ... A feature is "an abstract functional characteristic of a system of interest that end-users and other stakeholders can understand."
 [ISO/IEC 26550:2015]
- For the Businessman in us ... A Feature is a stakeholder perceivable behavior of a system which has positive impact on his purchasing decision.
- A feature describes a system's behavior, not a (technical) system solution!

"When I approach my car with a box in my hands, I want to be able to open the trunk without having to put the box down."

Features have positive impact on stakeholders' purchasing decisions and are as a matter of principle independent from their technical realization in the Mobility System

M/TEY Ulrich Schulmeister | 2024-10

Combining Systems Engineering with Virtualization to Accelerate Software Engineering Gaining Speed in Systems Engineering

 \odot Speed up by consequently applying model-based principles, automatization & virtualization

Combining Systems Engineering with Virtualization to Accelerate Software Engineering Gaining Speed in Systems Engineering

€ D Speed up by consequently applying model-based principles, automatization & virtualization

Combining Systems Engineering with Virtualization to Accelerate Software Engineering Design for Safety

http://www.nexthamburg.de/userpost/klothoidenund-schleppkurvenberechnung-beim-radwegebau/

https://www.telegraph.co.uk/news/newstopics/howaboutthat/7547129/Councilcondemned-over-Britains-shortest-cycle-lane.html

Safety cannot be implemented afterwards!

Safety Goal "No transition of driving task to driver during driving"

- Vehicle in safe state
 - L4 system brings to the vehicle into safe position
 - L4 systems allows safe change of driver from passenger seat to driver seat → switch on warning lights
- Driver must be suitable and ready for take over of driving task
 - authentication via driving license
 - pressed brake pedal to enable start of driving

Residual risk that something happens anyway; 100% safety not possible!

Combining Systems Engineering with Virtualization to Accelerate Software Engineering The role of simulation in product engineering

Numerical Simulation

... will be a **game changer** in product engineering if used for **virtual release** ... is a **powerful approach** to

speed up development

save costs

explore new business areas, where real testing is rather impossible (e.g. autonomous driving)

Trust

... in M&S results will be the **key enabler**

Internal | Mobility Electronics | ME-EC/ENG33 | 2024-03-04

Combining Systems Engineering with Virtualization to Accelerate Software Engineering

THANK YOU!!!

THANKYOU FOR YOUR INTEREST!

Virtual Worlds for Real Life