

ENSURING HIGH AVAILABILITY

Maximize your Uptime with DELMIA Quintiq

Richard van MersbergenDELMIA Supply Chain Operations
Senior Solution Architect

WEBINAR SERIES 2024

On Demand:

Unlock the Full Potential of Your DELMIA Quintiq Solution – Navigating the Post-Implementation Phase

With Vincent Wiers

Upgrading your DELMIA Quintiq Solution: The WHY and the HOW With Bas van der Bijl

Unleash the Full Potential of the DELMIA Quintiq Optimizer With Vincent Wiers

LIVE Today:

Ensuring High Availability – Maximize your Uptime with DELMIA Quintiq With Richard van Mersbergen

AGENDA

Introduction

DELMIA Quintiq HA Features

HA architectures

Best practices

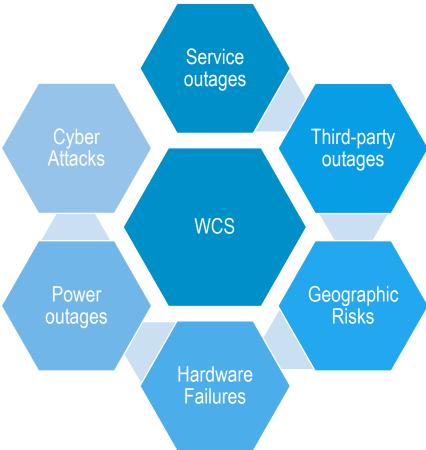
Q&A

HIGH AVAILABILITY

High Availability

The ability of a system to operate during intended business hours even if components within the system fail

Business Impact


What is the business impact of unavailability?

Worst Case Scenarios (WCS)

Catastrophic events that severely affect the infrastructure of a company

THREATS TO AVAILABILITY

HIGH AVAILABILITY

High Availability

The ability of a system to operate during intended business hours even if components within the system fail

Business Impact

What is the business impact of unavailability?

Worst Case Scenarios (WCS)

Catastrophic events that severely affect the infrastructure of a company

Availability is typically measured in percentage of uptime of a service during a period of time (i.e., month, year...)

LEVELS OF AVAILABILITY

90% 1

• 36 days/yr of downtime (WCS): [Standard] Usually for standard systems, where ordering a new server, installing and setting it up is fine.

99% 2

• 3.65 days/yr of downtime (WCS): [Important] Requires virtualized infrastructure, and/or spare hardware capacity. This is fine for most systems, in a simple redundant setup.

99.9% 3

• 8.7 hrs/yr of downtime (WCS): [Mission Important] Requires active use of redundancy features and standby images for fast recovery. (Simple Complexity HA)

99.99% 4

• 52.6 min/yr of downtime (WCS): [Critical] Requires the above, plus an active stand-by system, manual orchestration documentation, and automated failure detection with periodic testing. (Medium Complexity HA)

99.999% 5

• 957 sec/yr of downtime (WCS): [Mission-Critical] Requires the above plus special UI attention to designed views, automated orchestration, special attention to designed dataset size. (High Complexity HA)

99.9999% 6

• 31.56 sec/yr of downtime (WCS): Military/Medical system levels of High Availability are not supported by the DELMIA Quintig software in a Worst Case Scenario (WCS).

HIGH AVAILABILITY

High Availability

The ability of a system to operate during intended business hours even if components within the system fail

Business Impact

What is the business impact of unavailability?

Worst Case Scenarios (WCS)

Catastrophic events that severely affect the infrastructure of a company

Availability is typically measured in percentage of uptime of a service during a period of time (i.e., month, year...)

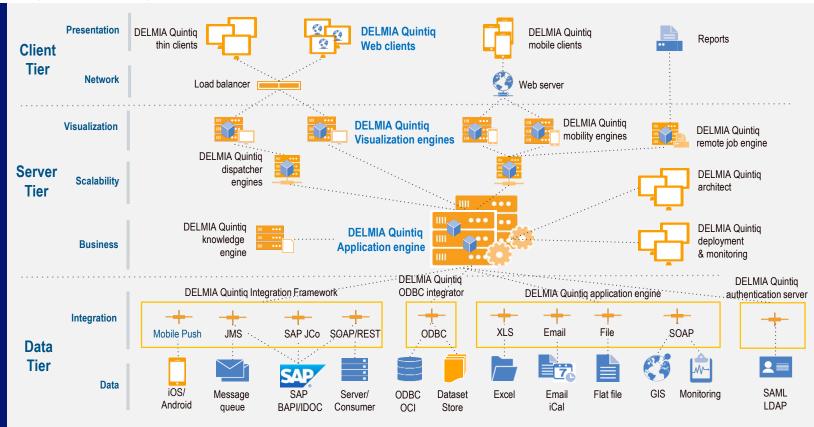
The business impact and WCS define the High Availability requirements

AGENDA

Introduction

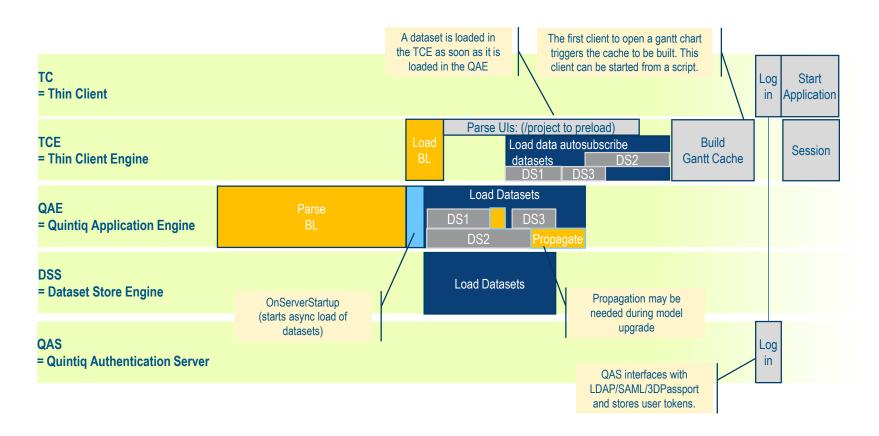
DELMIA Quintiq HA Features

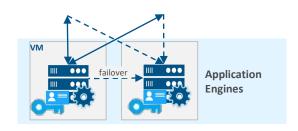
HA architectures

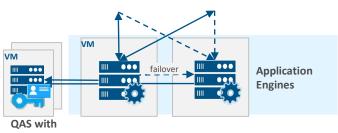

Best practices

Q&A

DELMIA QUINTIQ SOFTWARE ARCHITECTURE

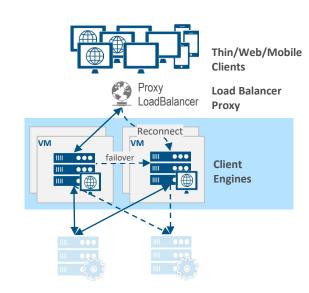

DELMIA Quintiq is a 3-tier system consisting of the following modules.


STARTUP SEQUENCE



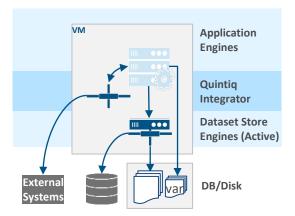
Server Layer

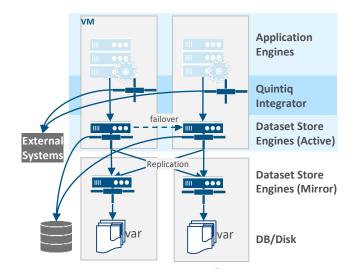
- Redundant components (QAE)
 - The TCEs/QMEs can connect to either QAE upon startup.
 - A stand-by QAE can be active, but datasets can only be loaded when the primary QAE stops.
- Shared License: local/SAN, standalone QAS
 - Allows sharing of license between servers. Enables containers and VM migration.
- Shared Server key: local/SAN, standalone QAS with Key Manager
 - The server key file should be stored on the local/SAN disk or in a standalone QAS. Use of NAS is strongly discouraged.
- Offline model upgrade
 - Allows upgraded datasets to be loaded into a QAE that is already running, without causing the QAE to switch to the 'maintenance mode'.


Key Manager

Client Layer

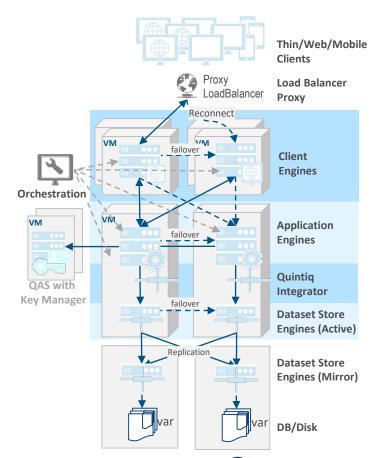
- Redundant components (TCE, QME)
 - Multiple TCEs/QMEs can be configured; If a TCE/QME fails the other active TCEs/QMEs can take over.
- Proxy/Load Balancer
 - An external load balancer can be used to simplify the (external) access for clients and distribute the load over TCE/QME
- Thin/Web Client Reconnect
 - After losing the connection with the TCE the TC will automatically connect to the (new) TCE when it is available. Users do not need to login again.
- Read-only TCE
 - After losing the connection with the QAE, a TCE will switch to read only mode. To minimize down-time the TCE can be stopped only when a new TCE is available; this requires orchestration.





Data/Integration layer

- Redundant components (DBE/QI)
 - Multiple QI and DBE can be configured to improve high-availability.
- Dataset Store (DSS)
 - The dataset set store is optimized for high speed loading of datasets.
- Database (optional):
 - Adding a database is possible, but optional when using DSS standalone.
- Shared Variable data (KB, views, settings): local share or in DSS
 - Variable data can be stored on local or shared disk or in the DSS using the QFS in DSS feature.
- Use VSS Writer for filesystem backup
 - Using VSS Writer (frequent) periodic in-sync backups can be made of DSS and var files.
- DSS Replication:
 - Using DSS Replication ensures redundant storage on multiple local (fast) disks taking away the need for using shared disk (slow NAS or expensive SAN).



Infrastructure layer

- Dedicated hardware, VMs or Containers
 - VMs and containers simplify recovery in case of hardware failure
 - Using dedicated hardware may be needed for large optimization solutions.
- Windows services and Orchestration tools (e.g. QEM)
 - Automatic restart on failure is suitable for basic architectures
 - For larger architectures the monitoring, deployment and orchestration is best done using tools fit for that purpose (such as QEM, clustering or Docker/Kubernetes).
- Local disk, shared disk (NAS or SAN)
 - Storing persistent and variable data on local disk is best for performance, while backups are needed for disaster recovery.
 - Shared disks have the advantage of having built-in redundancy. NAS is simple to set up but impacts performance. SAN is more complex to setup, but is fast and reliable.

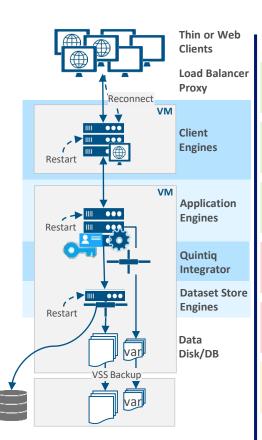
AGENDA

Introduction

DELMIA Quintiq HA Features

HA architectures

Best practices


Q&A

SIMPLE HA ARCHITECTURE

Restart on VM, periodic backup

- No redundancy; single instance per component
 - VMs can be shared if memory load allows.
- Windows Services to restart automatically.
 - Read-only TCE not available when using windows services.
- License/key file are local
 - in case of new QAE hardware a new license is needed.
- Use of local disk for storage in combination with VSS Writer backup
- (optional) Database for internal storage
 - The benefit of local disk performance is lost if a database is used.
 - Using a DB increases chance for mismatch between DB/DSS.
 - Benefits from customer database backup procedures.

Hardware: Single instance per component – depending on memory load on separate VMs.

Configuration:

Limited to windows services and VSS backup.

Performance:

Local disk is fast especially when using SSD or similar technology.

Down-time: Windows services restart whole stack. Thin Client can reconnect but users are waiting.

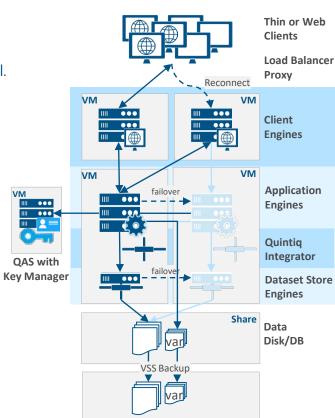
Data loss:

Periodic backup has potential for data loss if backup is old.

Disaster recovery:

Revert to periodic backup in case of disaster.

MEDIUM HA SCENARIO


VMs, Shared Disk, Redundant components

Redundant Client Engines

- TCs can reconnect to remaining TCEs when they fail. Also, TCEs are read-only while failover happens.

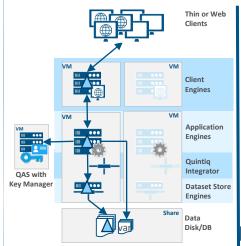
Stand-by QAE

- In some cases stand-by system can be used as a test system.
- Standalone (shared) QAS with Key Manager
 - Allows for QAEs to be used without hardwaredependent license. Stand-by QAE can be added on-demand, and no key file on disk is needed.
- Shared disk (NAS)
 - NAS is simple and has built-in redundancy, but impacts performance. Alternative is a SAN is performant but more advanced.
- Backup using VSS Writer
 - For disaster recovery make a periodic snapshot.

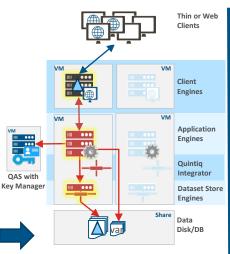
Hardware: Key Manager enables automatic deployment possible.

Configuration: Redundant components and orchestration scripts are required for failover

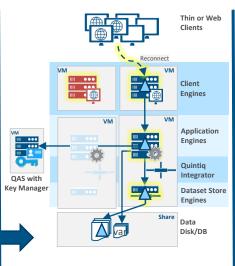
Performance: NAS is simple but slow. For high performance complex SAN is needed.

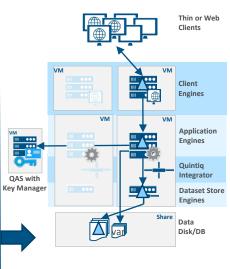

Down-time: TCEs continue readonly while restart happens. TCs reconnect to other TCEs.

Data loss: Network shares have built-in redundancy minimizing the risk of data loss.


Disaster Recovery:

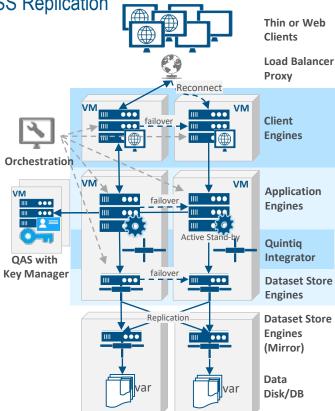
Revert to periodic backup in case of disaster.


MEDIUM HA FAILOVER SCENARIO


Phase 1: primary system is running standby system is configured

Phase 2: primary QAE fails/stopped TCE becomes read only

Phase 3: orchestration starts standby stack unlock and load datasets build Gantt cache stop old TCE (TCs reconnect)



Phase 4: system continues (primary/standby swapped)

ADVANCED HA ARCHITECTURE

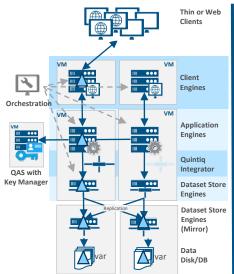
Orchestration, Containers, Key Manager, DSS Replication

- Active Stand-by QAE
 - QAE is active without data sets loaded
- Standalone (shared) QAS with Key Manager
 - Using a standalone QAS allows to use containers or on-demand VMs for QAEs.
- Containers and Orchestration
 - To automate the failover and minimize down-time orchestration is required.
- Var in DSS + DSS Replication
 - Using var-in-DSS means no separate backup is needed for var. DSS Replication combines the speed of local disks on redundant machines.

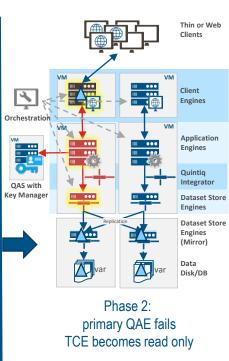
Hardware use: Active Stand-by system requires hardware that is always on.

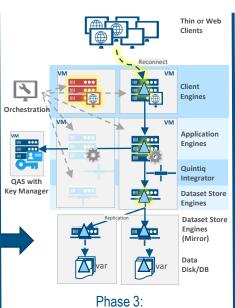
Configuration: Many components and advanced high-availability features are configured.

Performance: Mirror dataset stores are fast when using local disk (SSD) and high-bandwidth connections.

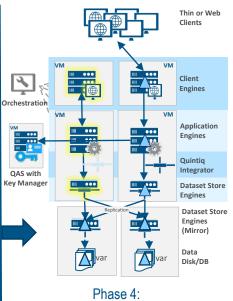

Down-time: TCEs are read-only during failover. Active (hot) standby system only loads data.

Data loss:


Mirror dataset stores are always up to date.


Disaster Recovery: Mirrors can be in different datacenters, depending on bandwidth (impacts performance).

ADVANCED HA FAILOVER SCENARIO



Phase 1: standby in "passive" state definitions loaded, no datasets

call startup manager SOAP method (unlocks/loads datasets; rescan views) build Gantt cache stop old TCE (TCs reconnect)

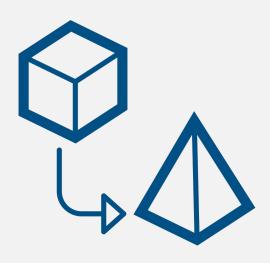
system continues
restart new stand-by system
definitions only

AGENDA

Introduction

DELMIA Quintiq HA Features

HA architectures


Best practices

Q&A

DESIGNING YOUR HA ARCHITECTURE

- Perform a risk analysis to determine worst case scenarios and business impact
- Take maturity and experience level of your IT organization into account
- Focus on reducing startup time of the QAE:
 - Dataset design
 - Dataset loading strategy
- Carefully consider what the conditions are for automatic failover
- Integrate DELMIA Quintiq software with monitoring and orchestration tools.
- Design and execute a DR test for every WCS

AGENDA

Introduction

DELMIA Quintiq HA Features

HA architectures and scenarios

Best practices

Q&A

Q & A

Register Now!

WEBINAR

Embracing the AI frontier – Leverage Artificial Intelligence and Machine Learning with DELMIA Quintiq!

Our Expert:

Geoff Locket

DELMIA World Wide Industry Process

Consultant

S DELMIA

Target Audience DELMIA Quintiq Current and New Users DELMIA Quintiq Partners

Reasons to Join

- Understand the key terminologies; technologies and use cases for AI/ML in planning
- Explore the AI / ML options included with DELMIA Quintiq
- Learn best practices for effective AI / ML projects
- Effectively integrate AI/ML with your current planning solution setup and processes

When

March 13 | 3:00PM CET | LIVE

THANK YOU FOR ATTENDING!

DISCOVER MORE ON 3DS.COM

