

THE ANTENNA VIRTUAL TWIN – WHEN MEASUREMENTS AND SIMULATIONS UNITE

Stéphane SIREAU

Vice President High Tech Industry Dassault Systèmes

Benoit DERAT

Senior Director of Engineering VNA, EMC and Antenna Test Rohde & Schwarz GmbH

Benoit DERAT

Senior Director of Engineering VNA, EMC and Antenna Test Rohde & Schwarz GmbH THE ANTENNA VIRTUAL TWIN – WHEN MEASUREMENTS AND SIMULATIONS UNITE

OUTLINE

- Context and problem statement
- Principle of simulation-augmented measurements with the antenna digital twin
- Example applications
- Conclusion

OUTLINE

Context and problem statement

- Principle of simulation-augmented measurements with the antenna digital twin
- Example applications
- Conclusion

Oct. 2024 B. Derat, Digital Antenna Twin, 3DEXPERIENCE Conference 2024

SAR MEASUREMENT SETUP FOR CAR PASSENGERS

SAR = Specific Absorption Rate

D. O. McCoy, D. Zakharia and Q. Balzano, "Field strengths and specific absorption rates in automotive environments," 1999 IEEE 49th Vehicular Technology Conference

NEED FOR ADVANCED CHARACTERIZATION TECHNIQUES

In-vehicle connectivity optimization

Complex scenarii simulations

B. Derat, Digital Antenna Twin, 3DEXPERIENCE Conference 2024

Antenna and placement optimization

Human exposure evaluation

MEASUREMENT, SIMULATION AND THEIR COMBINATION

Antenna / OTA measurement	Full-w
Blind: no designer knowledge required Full system characterization Includes production and operation tolerances	Requires of No comple Modelling
Limited to canonical test environments Not every field distribution can be measured Time may explode when configurations multiply	Highly com Every field Parametric simulations

Simulation-augmented antenna / OTA measurements (OTAA)

B. Derat, Digital Antenna Twin, 3DEXPERIENCE Conference ${}_{20}QTA = Over-The-Air$

vave electromagnetic simulation

- deep knowledge on DUT ete system, e.g. active circuits of tolerances is cumbersome
- nplex scenarii can be simulated distribution can be computed modelling and batching allow s round the clock

OUTLINE

Context and problem statement

- Principle of simulation-augmented measurements with the antenna digital twin
- Example applications
- ► Conclusion

Oct. 2024 B. Derat, Digital Antenna Twin, 3DEXPERIENCE Conference 2024

PRINCIPLE OF SIMULATION-AUGMENTED MEASUREMENTS

STEP 1 - MEASUREMENTS

- Making use of the Huygens principle
- Measure at least two phasor components among the six of the radiated E and H fields

Closed surface encompassing the DUT

Spherical scanning distributed-axes system with radio base station as a DUT

Oct. 2024 B. Derat, Digital Antenna Twin, 3DEXPERIENCE Conference 2024

STEP 2 - ANTENNA DIGITAL TWIN CREATION

- Equivalent source reconstruction inverse problem resolution
- FIAFTA (Fast Irregular Antenna Field Transformation Algorithm) developed at the Chair of HF Engineering of the TU Munich – FIAFTA operator:

$$U(\vec{r}_{M}) = \iiint_{V_{Probe}} \vec{w}_{Probe}(\vec{r} - \vec{r}_{M}) \cdot \iiint_{\Sigma_{rec}} \begin{bmatrix} \vec{G}_{J}^{E}(\vec{r}, \vec{r}') \cdot \vec{J}_{A}(\vec{r}') + \vec{G}_{M}^{E}(\vec{r}, \vec{r}') \cdot \vec{M}_{A}(\vec{r}') \end{bmatrix} da'dv$$

$$\vec{G}_{J}^{E}(\vec{r}, \vec{r}') = -jkZ_{F} \left(\vec{I} + \frac{1}{k^{2}}\nabla\nabla\right) \frac{e^{-jk|\vec{r} - \vec{r}'|}}{4\pi|\vec{r} - \vec{r}'|} \qquad \vec{G}_{M}^{E}(\vec{r}, \vec{r}') = -\frac{1}{4\pi}\nabla\times\vec{I} \frac{e^{-jk|\vec{r} - \vec{r}'|}}{4\pi|\vec{r} - \vec{r}'|}$$

Love-type boundary condition: E = H = 0 inside the equivalent source surface

STEP 3 - SIMULATION

► We used the Finite Difference Time Domain (FDTD) code

Oct. 2024 B. Derat, Digital Antenna Twin, 3DEXPERIENCE Conference 2024

AN EQUIVALENT RADIATION SOURCE

The equivalent source created by FIAFTA is only equivalent to the DUT with respect to its radiation properties not its scattering properties: we call it a non-reflective digital twin

Oct. 2024 B. Derat, Digital Antenna Twin, 3DEXPERIENCE Conference 2024

AN EQUIVALENT RADIATION AND SCATTERING MODEL

- The Love condition allows to control scattering properties independently from radiation properties
- Scattering properties can be applied in the FWEM software on a surface encompassed in the FIAFTA reconstruction surface to create a reflective digital twin

Approximate scenario with source replaced by its reflective digital twin

POWER NORMALIZATION IN A SIMULATION-AUGMENTED MEASUREMENT

- In measurements and simulations, evaluating the power applied and accepted by the antenna is straightforward
- What to do in combination of measurement and simulation?

- Time-average active power flow calculated from the Poynting vector
- The total power crossing the equivalent surface is normalized to the measured total radiated power (TRP)

 $S_n = \frac{1}{2} \operatorname{Re} \left\{ \mathbf{E} \times \mathbf{H}^* \cdot \mathbf{n} \right\}$

 $P_{tot} = \iint S_n \, d\Sigma = \iint S_n \, d\Sigma$ Σ_{meas}

> D. Schaefer et al., "Power Normalization for **Over the Air Augmented Exposure** Assessment," 2024 GeMiC.

OUTLINE

Context and problem statement

Principle of simulation-augmented measurements with the antenna digital twin

- Example applications
- Conclusion

Oct. 2024 B. Derat, Digital Antenna Twin, 3DEXPERIENCE Conference 2024

APPLICATION 1: AUTOMOTIVE WIFI / BT ANTENNAS INTEGRATION

Objective: determine the best antenna positions and operating frequencies for achieving an optimal in-car connectivity performance

Challenges:

- Impossible to measure such effects by probing inside the car in various possible interior and loading configurations
- Numerical modeling works but is limited by the knowledge of the objects to simulate

B. Derat et al., "Optimization of In-Vehicle Connectivity through Simulation-Augmented Antenna Measurements," 2022 Antenna Measurement Techniques Association Symposium (AMTA)

MIDDLE CONSOLE MEASUREMENTS

- ► Full console as DUT with 3 integrated antennas
- Measured with spherical scanning system and VNA (2 deg sampling rate)
- Benefits of considering the full console as DUT
 - Accounting more precisely for very near-field interactions
 - RF cables are routed in the same way as in the vehicle

COMPUTATIONAL MODEL

- Middle-console replaced by equivalent source box
- Two conditions: empty car, or with driver and front passenger
- Posed anatomical human models (ca. 50 body) tissues)
- ► 350 MCells (2.5 to 3.5 mm size) computed in less than 30 min with less than 30 GB memory usage: equivalent source approach can reduce by a factor 10+ the size and time of the computation

IN-VEHICLE FIELD DISTRIBUTION ANTENNA 1 / 2.4 GHZ

- Magnitude E-field distributions: linear scales 0 to 5 V/m
- Unloaded field distribution shows higher amplitudes at the front, with larger amount of energy towards the driver
- Due to antenna location and main directions of radiation: significant power decay towards the second row

Y Z X

IN-VEHICLE FIELD DISTRIBUTION ANTENNA 2 / 5 GHZ

- Magnitude E-field distributions: linear scales 0 to 5 V/m
- Antenna 2 being more central in the middle console, and having a radiation towards the back at 5 GHz (in-between the front seats): influence of front row is reduced

SAR EVALUATION ASPECTS

Oct. 2024 B. Derat, Digital Antenna Twin, 3DEXPERIENCE Conference 2024

Which approach would you prefer to apply?

APPLICATION 2: EMF – ABSORBED POWER DENSITY EVALUATIONS FOR MOBILE PHONES AND BASE STATIONS

- Wireless manufacturers must ensure that their products comply with applicable regulatory human exposure limits (EMF compliance)
- Above 10 GHz, EMF compliance of user equipment (UE) and radio base stations (RBS) is determined from near-field free-space incident power density measurements (IPD)
- In 2020, the ICNIRP issued a revision of its guideline changing the basic restrictions from freespace IPD to absorbed power density (APD) in epithelial tissues
- APD evaluations at such frequencies raise major challenges, e.g. test time and dynamic range (20 dB attenuation after 2 mm of propagation in the skin at 30 GHz)

SIMULATION-AUGMENTED OTA APPROACH TO IPD AND APD

B. Derat, T. Liebig, D. Schaefer, M. Celik and W. Simon, "Absorbed Power Density" Assessment Using Simulation-Augmented Over-the-Air Measurement," in IEEE Access, vol. 12, pp. 28122-28140, 2024.

24

B. Derat, Digital Antenna Twin, 3DEXPERIENCE Conference 2024 Oct. 2024

APD MEASUREMENT APPROACHES

State-of-the-art

B. Derat, Digital Antenna Twin, 3DEXPERIENCE Conference 2024 Oct. 2024

Simulation-augmented measurements

REFERENCE SOURCES USED FOR VALIDATING THE TECHNIQUE

- ► IEC / IEEE 63195 validation antennas at 30 and 60 GHz (simulated and measured)
- ► Mobile device model at 28 GHz with 4x1 patch array and two beam settings
- ► RBS model at 28 GHz with 24x8 patch array and two beam settings

APD RESULTS COMPARISON NON-REFLECTIVE DIGITAL TWIN

The OTAA approach gives the trend, yet standing-wave effects are not identified as the equivalent source is a radiation model and does not scatter

4 cm²-square averaging

B. Derat, Digital Antenna Twin, 3DEXPERIENCE Conference 2024 Oct. 2024

APD RESULTS COMPARISON REFLECTIVE DIGITAL TWIN

Standing-wave effects are recovered in a rather conservative fashion

B. Derat, Digital Antenna Twin, 3DEXPERIENCE Conference 2024 Oct. 2024

4 cm²-square averaging

EXAMPLE APD DISTRIBUTION COMPARISON

Sony Mockup 28GHz / aPD @ distance 1.25mm

B. Derat, Digital Antenna Twin, 3DEXPERIENCE Conference 2024 Oct. 2024

SAVING MEASUREMENT TIME

54 mm antenna at 30 GHz – evaluation plane 2 mm

8 cm x 8 cm scan grid, with $\lambda/4$ step size – 2.5 hours test time, 1 DUT facet

B. Derat, Digital Antenna Twin, 3DEXPERIENCE Conference 2024 Oct. 2024

OTAA: 6 deg AZ and EL sampling down to 162 deg in EL – 4 min test time, 5 **DUT facets**

OUTLINE

- Context and problem statement
- Principle of simulation-augmented measurements with the antenna digital twin
- Example applications
- Conclusion

CONCLUSION

- Antennas couple and interfere with their nearby environment, and in situ assessments (e.g. antenna as integrated) are necessary to take the right decisions
- Electromagnetic field and antenna characterizations in real world scenarii can be a challenge
- Simulation is an alternative in such case, but is limited by the knowledge of the DUT
- The antenna digital twin / simulation-augmented antenna measurement approach provides another powerful tool combining the strengths of both the experimental and numerical domains
- The application of this technique demonstrated to provide relevant and even accurate results, along with positive outlook on associated measurement and computational times
- No characterization technique is perfect and whether the digital twin approach is the best for a given application shall be decided based on thorough measurement uncertainty analysis

THANKYOU FOR YOUR INTEREST

Virtual Worlds for Real Life