

RESOURCES

Dr. Stephan ARNDT

Head of Technology & Innovation Mining One

EXTREME ENVIRONMENTS: HOW HPC SIMULATION HELPS EXTRACTING VALUABLE

Extracting Resources

The mining industry has an image problem – Sustainability – A global skills crisis – Decarbonisation, Electric Vehicles and Green Steel – Digital Twins

The World Needs Resources

Iron Ore

Lithium

Gold

Nickel

Silver

Copper

Dr. Stephan Arndt - Extreme Environments: How HPC Simulation helps to extract valuable resources

Rare Earth

Aluminium

Extreme Environments 4000m Altitude – or 1200m below the surface – Scale

17 Oct 2024

Extreme Environments – 4000m Altitude

17 Oct 2024

The World's highest altitude Abaqus Training?

Dr. Stephan Arndt - Extreme Environments: How HPC Simulati

HOERGROUND MINE DIVIS

1200m Deep ... and Beyond

17 Oct 2024

Extreme Environments – Scale

5m

http://www.powersof10.com

Dr. Stephan Arndt - Extreme Environments: How HPC Simulation helps to extract valuable resources

50m

Forecasting Seismicity, Stability and Stress in Underground Mining Stephan Arndt, 2013 SIMULIA Community Conference, Vienna

Simulation

Modelling Rock Mass in High Stress: IUCM – Rock Anisotropy in Constitutive Models

17 Oct 2024

Modelling Rock Mass in High Stress: IUCM

Stress – Strain

- **1)** Elastic
- 2) Fracturing (onset of in-elastic behaviour)
- 3) Peak strength
- Softening 4)
- Broken 5) (residual strength)

Mine-by-experiment

Cai et at. (2004) Hajiabdolmajid et al. (2002) Read, Martin (1996)

Technical summary of AECL's Mine-by Experiment phase I: Excavation response PDF Read, R.S.; Martin, C.D. (Atomic Energy of Canada Ltd., Pinawa, MB (Canada). Whiteshell Labs.) Atomic Energy of Canada Ltd., Pinawa, MB (Canada). Whiteshell Labs 1996

17 Oct 2024

Rock Anisotropy in Constitutive Models

17 Oct 2024

<u>https://www.linkedin.com/pulse/how-rock-anisotropy-works-numerical-models-stephan-arndt/</u> <u>https://www.linkedin.com/pulse/principal-stress-transformations-stephan-arndt-e7jbc/</u>

12

Improved Unified Constitutive Model – IUCM

IUCM Features (Vakili 2016)

- Non-linear Hoek-Brown
- Brittle to ductile transition
- Confinement-dependent strain-softening
- Non-linear evolution of dilation
- Elastic stiffness softening
- Strength anisotropy (weak plane)
- Available as a constitutive model library (VUMAT) for Abaqus / Simulation Manager

- Obtain the current minor and major principal stresses for each finite difference zone (or element in the finite element method).
- 3. Obtain minor principal stress increment ($\Delta\sigma_3$) by adding and subtracting 0.1% of the current σ_3 magnitude,

$$\sigma_3^1 = \sigma_3 - 0.001\sigma_3$$

 $\sigma_2^2 = \sigma_3 + 0.001\sigma_3$

4. Calculate constants for the Hoek-Brown criterion based on equations provided by Hoek et al. [35], (GSI = 100)

$$m_b = m_i \exp\left(\frac{353 - 140}{28 - 14D}\right)$$

$$s = \exp\left(\frac{GSI - 100}{9 - 3D}\right)$$

$$a = \frac{1}{2} + \frac{1}{6}\left(e^{-\frac{GSI}{15}} + e^{-\frac{20}{3}}\right)$$

5. Obtain the major principal stress increment $(\Delta \sigma_1)$ from the generalised Hoek-Brown failure criterion [35] and from the measured change in the minor principal stress $(\Delta \sigma_3)$,

$$\sigma_1^1 = \sigma_3^1 - \sigma_c \left(m_b \frac{\sigma_3}{\sigma_c} + s
ight) \ \sigma_1^2 = \sigma_3^2 - \sigma_c \left(m_b \frac{\sigma_3^2}{\sigma_c} + s
ight)^a$$

- 6. Obtain the slope (ψ) of the incremental stress envelope, $\tan \psi = \frac{\sigma_1^1 - \sigma_1^2}{\sigma_3^1 - \sigma_3^2}$
- 7. Calculate instantaneous friction angle (φ) from ψ , $\varphi = \sin^{-1} \left(\frac{\tan \psi - 1}{\tan \psi + 1} \right)$


```
// IUCM (Vakili. 2016)
                         // -----
                         // 3: sigma3 variation (dS = +/- 0.001) - formulas use [MPa] (!)
                         dS3_1 = abs(0.999 * eigVal[3]) / c_1MPa;
                         dS3_2 = abs(1.001 * eigVal[3]) / c_1MPa:
                (1)
                (2)
                         // 4: Hoek-Brown constants
                         if (p_gsi > 99.9) prop_gsi = 99.9;
                         prop_hbmb = p_mimax * exp((prop_gsi - 100.) / (28. - 14. * p_disfac));
                (3)
                         prop_hbs = exp((prop_gsi - 100.) / (9. - 3. * p_disfac));
                (4)
                         prop_hba = 0.5 + 1. / 6. * (exp(-prop_gsi / 15.) + exp(-20. / 3.));
                (5)
                         // 5: generalised Hoek-Brown failure criterion
                         dS1_1 = dS3_1 + p_sigci * pow(prop_hbmb * (dS3_1 / p_sigci) + prop_hbs, prop_hba);
                         dS1_2 = dS3_2 + p_sigci * pow(prop_hbmb * (dS3_2 / p_sigci) + prop_hbs, prop_hba);
                (6)
                         // 6: slope of HB curve, current friction & cohesion
                         dS_{tan}Psi = (dS1_2 - dS1_1) / (dS3_2 - dS3_1);
                (7)
                         // 7: instantaneous friction angle
                (8)
                         prop_phi = asin((dS_tanPsi - 1.) / (dS_tanPsi + 1.));
                         // 8: instantaneous cohesion
                (9)
                         dS_sinPhi = sin(prop_phi);
                         prop_coh = (dS1_1 * (1. - dS_sinPhi) - dS3_1 * (1. + dS_sinPhi)) / (2. * cos(prop_phi));
               (10)
                         // 9: uniaxial tensile strength
                         prop_ten = prop_hbs * p_sigci / prop_hbmb;
                                                                                        Abaqus User
                         // 10: maximum tensile strength & bracket friction angle (ag
                                                                                          Subroutine
                         if (prop_phi <= c_minA) prop_phi = c_minA;</pre>
                         if (prop_phi >= c_maxA) prop_phi = c_maxA;
(Vakili 2016)
                         s_tmax = prop_coh / tan(prop_phi);
                         if (prop_ten > s_tmax) prop_ten = s_tmax;
```

"What you see is what you get"

^{1.} Initialise the pre-mining stresses in the model.

Zero Prototypes

3 SIMULIA

MOVING TOWARDS ZERO-PROTOTYPING FOR AUTOMOTIVE PASSIVE SAFETY

Courtesy BMW/SIMULIA

Real World 'Prototypes'

17 Oct 2024

Workflows

Slope Stability – Solution Pathway – Pore Pressure – Underground Workflows – StopeX and SlopeX

Slope Stability

Stability analysis is a central element of the slope design process^{*}

- Safety (zero harm & protecting the environment)
- Project economics & reducing financial risk
- Sustainability (energy consumption, waste)

Accurate 3D Numerical Modelling can contribute significantly to these objectives.

* *"Guidelines for Open Pit Slope Design", Read (Ed.) 2009. CSIRO Publishing.*

Tectonic Stress and Model Equilibrium

Solution Pathway: Equilibrium to Instability

Pore Pressure

Reliability-Based Design Access Criteria

Reliability-Based Design Access Criteria (RBDAC)

- Failure volume and location are required inputs for the economic risk assessment of inter-ramp & overall pit slope designs (Creighton et al. 2022)
- Risk-consequence approach to open pit slope design: *"Risk criteria are therefore set on the basis of consequences of potential failures"* (Terbrugge et al. 2006)
- Consider design acceptance criteria using confidence classification and consequence categories (Macciotta et al. 2020)

Underground Workflow

StopeX & SlopeX

- Web-based user interface
- **Rapid** model construction (~hours)
- Automated octree meshing
- Guided, best-practice, workflows
- Cavroc forum: support & discussions
- IUCM constitutive model for rock mass
- Supporting multiple solvers
- RocboX stope **performance** intelligence

3DEXPERIENCE platform Simulation Manager – Physics Results Explorer – Scalability – Virtual Reality

17 Oct 2024

Work 🕼 🗖 😨 Simulation M	lanager - S	imulation $ imes$	+			
C ດ 🖒 https://r11:	-	Same inte			-	(Andrease and a second
3DEXPERIENCE 3	DDashb	oard Simu	llation Manager 🗸	Sear	ch	
Simulation Manage	er 🗸	Physics	Results Review 3	3DSpace 3DSwym	Lifecycle	+
Simulation Manager						
F ⊙ ■ ⋒▼	2	h e c	5 O C			
Title	Status	Results	Ses Modification 1	0 selected		
		41 GB	Sep 7, 2024,			
		32 GB	Sep 6, 2024,			
	Ţ	4.62 GB	Sep 4, 2024,			
	Ţ	4.63 GB	Aug 27, 2024,			
- 😝	IJ	9.42 GB	Aug 9, 2024, :			
AnalysisCase.2			Aug 9, 2024, :			
AnalysisCase.1	Ţ	9.42 GB	Aug 8, 2024, {			
- 😝 SimuServ Diagnostics (A)		7.30 MB	Jul 29, 2024, ‡			
AnalysisCase.2		5.92 MB	Jul 29, 2024, ‡			Ma
AnalysisCase.1		1.37 MB	Jul 23, 2024,			
🕘 👙 SingleStope (A)	×	1.44 GB	Jul 29, 2024,			
Precompiled	×	475 MB	Jul 29, 2024,			
SourceCode		1003 MB	Jul 12, 2024, :			
- 👙		—	Jul 19, 2024, i			
			Aug 6, 2024, '			
			Jul 19, 2024, i			2
			Jul 17, 2024,			v
Field Variable Test (A)	×	3.30 GB	Jul 18, 2024, 4			
Dip70.Direction70.FV.2024x.HF3	×	226 MB	Jul 18, 2024,			
Dip70.Direction70.FV		3.07 GB	Dec 14, 2023,			
- 😝 WedgeFail_5M (A)		<u> </u>	Apr 10, 2024,			
AnalysisCase.1			Apr 10, 2024, 🔷			

a selection to view monitoring details or set up and run a simulation

 \times

×

2

Travelling at the speed of light

Virtual Reality

Technology Firm Gartner famously booted Virtual Reality (VR) off its "Emerging Technologies" Hype Cycle graph in 2018

Noteworthy: the dominance of AI in 2023

3DEXPERIENCE

SS

3DEXPERIENCE | SIMULIA Physics Results Expl Newcrest Cadia A.1

3DEXPERIENCE: Underground geometry 'asbuilt' and simulation for Newcrest's Cadia Mine

https://youtu.be/u7cfXFDGnac?si=hDpdORjCSLPHBU5q

https://www.linkedin.com/pulse/virtual-reality-where-business-value-stephan-arndt/

Thank You

THANKYOU FOR YOUR INTEREST

Virtual Worlds for Real Life